Ken IversoN, 1920-2020
(6,x)+(x,0)

Some Thoughts
about the Future
of
lverson Notation

Morten Kromberg mkrom@dyalog.com
lverson@100 — Dec 17t, 2020

sin«l O angle

Will the notation survive?

Yes!

lverson did not invent APL...
He discovered it!

(Bernard Legrand)

Notation
VS
Programming Language

The most successful APL users
did not have programming
as their primary skill

The Luhn algorithm (according to WikiPedia)

Description |edit]
The formula verifies a number against its included check digit, which is usually appended to a

partial account number to generate the full account number. This number must pass the

following test:

1. From the rightmost digit (excluding the check digit) and moving left, double the value of
every second digit. The check digit is neither doubled nor included in this calculation; the
first digit doubled is the digit located immediately left of the check digit. If the result of this
doubling operation is greater than 9 (e.g., 8 x 2 = 16), then add the digits of the result
(e.g.,16:1+6=7,18: 1+ 8 = 9) or, alternatively, the same final result can be found by

subtracting 9 from that result (e.g., 16: 16 -9=7,18: 18 - 9=9).
2. Take the sum of all the digits.
3. If the total modulo 10 is equal to 0 (if the total ends in zero) then the number is valid

according to the Luhn formula; otherwise it is not valid.

Assume an example of an account number "7992739871" that will have a check digit added,
making it of the form 799273987 1x:

Account number 7 9 9 2 s 3 9 8 s 1 X
Double every other | 7 | 18 | 9 & { 6 9 16| 7 2 X
Sum digits 7 9 9 4 ¥ 6 9 7 ¥ 2 X

Array Oriented Luhn
CardNo 7]9]912]7]3/9]8]7 1]3]

Body<«(Count«~1+#CardNo) tCardNo Check<«+/CardNo

Body 7909 217139 8[71 Bl Check

Weights«Countp(2|Count)¢$l 2

Weights HE BB R E R

Products«BodyxWeights

Products 0 5) e o A e

Digits«0 10TProducts

Digits jo/ajejojojojofz]oja
HEIBEEEEI B

SumDigits SumDigits«+/,Digits Check+10|-SumDigits H Check

Functional
+

Array Orientation

Mechanical Sympathy

Criticisms of APL

Language

Weird Symbols
Infix Notation for ALL functions
Operators vs Functions
No Type Declarations
Dynamic Scope / Global by Default

Language

Wonderful Symbols
Infix Notation for ALL functions
Operators vs Functions
No Type Declarations
Dynamic Scope / Global by Default

Oh all right then,
we *have™ added...

control structures
local-by-default lexical scope
and OOP (if you must)

but
:Repeat ... :Until
and
Implements Constructor

... are not part of the notation

How do we ensure that the
notation is still relevant
on Iverson's 200th birthday...

(in other words, when Python and Javascript
have been swept aside,
[web] platforms have matured,
GUI and Security APl madness is behind us?)

NOT by making the language
more like Python & JavaScript!

Criticisms of APL

Eco-Systems

Poor libraries & poor library support in the language
Insufficient training materials and samples
Closed, ageing community
"Corporate" rather than "Hacker" vibe

... fair enough, we will work on these

There is a steady supply
of people who want to learn
how to solve problems
on a computer...

| am a high school student.
This is the fourth year | am entering this competition.
| really enjoy it every year.

| am a big fan of the array-oriented approach | get to use with APL.
| feel like | spend a lot more time focusing on solving the problem
instead of having to focus on syntax like with other languages.

| am also familiar with C# and Python
but APL is definitely my favourite language.

Poetry

rippleShuffle « {w[AV(pw)pl 0]}
rippleShuffle 110

051627 3849

nestDepth « {+\-#'()"' o.= w} nextPascal « {(O,w)+(w,0)}
nestDepth "a«(2x(3+4))=+10"' nextPascal 1 3 3 1
(formatted) 00111222210000 1 4641

mean <« ++ + #
mean 1 2 3 4

2.5
palindrome <« [[=¢¢=[] leapYear « 0 #.= 4 100 400 o.| *~
palindrome 'ABBA' leapYear 2020

—_ = e e e -

{(12xw w)elQw+|lwxl 2 o.0 0+\200/0.01} 5

111111

111111

1

—_ e S e e

You have been using the same
programming language
for more than 30 years,

and you are still smiling!?

(comment from young Indian programmer
after an APL talk at FunctionalConf, Bangalore)

—_ = e e e -

{(12xw w)elQw+|lwxl 2 o.0 0+\200/0.01} 5

111111

00O00O

111111

1

—_ e S e e

You have been using the same
programming language
for more than 30 years,

and you are still smiling!?

(comment from young Indian programmer
after an APL talk at FunctionalConf, Bangalore)

KeNn IversoN, 1920-2020
(6,x)+(x,6) \T;

